Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Toxicol ; 4: 883063, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990858

RESUMO

Microcystins constitute a group of over 200 variants and are increasingly considered as emerging toxins in food and feed safety, particularly with regards to sea-food and fish consumption. Toxicity of MCs is congener-specific, being characterised by different acute potencies, likely related to the differential activity of metabolic enzymes and transporters proteins involved in their cellular uptake. However, the active transport of MCs across intestinal membranes has not been fully elucidated. Our results, obtained using a fit for purpose 3D human reconstructed intestinal epithelium, provide new information on the complex mechanisms involved in the absorption of 5 MC variants': it is indeed characterised by the equilibrium between uptake and extrusion, since the selected congeners are substrates of both influx and efflux proteins. In the range of tested nominal concentrations (10-40 µM) fully representative of relevant exposure scenarios, none of the active tested transporters were saturated. The comparison of permeability (Papp) values of MCs variants highlighted a dose independent relationship for MC-LR, -YR and -RR (Papp x 10-7 ranged from 2.95 to 3.54 cm/s), whereas -LW and-LF showed a dose dependent increase in permeability reaching Papp values which were similar to the other congeners at 40 µM. MC-RR, -LR, -YR show absorption values around 5% of the administered dose. Due to their lipophilicity, MC-LW and -LF were also detected within the cellular compartment. The intestinal uptake was only partially attributable to OATPs, suggesting the involvement of additional transporters. Regarding the efflux proteins, MCs are not P-gp substrates whereas MRP2 and to a lesser extent Breast cancer resistance protein are active in their extrusion. Despite the presence of GST proteins, as an indication of metabolic competence, in the intestinal tissue, MC-conjugates were never detected in our experimental settings.

2.
Food Chem Toxicol ; 143: 111514, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32590074

RESUMO

Data on the bioactivation of Phosmet (Pho), a phthalimide-derived organophosphate pesticide (OPT), to the neurotoxic metabolite Phosmet-oxon (PhOx) in human are not available. The characterization of the reaction in single human recombinant CYPs evidenced that the ranking of the intrinsic clearances was: 2C18>2C19>2B6>2C9>1A1>1A2>2D6>3A4>2A6. Considering the average human hepatic content, CYP2C19 contributed for the great majority (60%) at relevant exposure concentrations, while CYP2C9 (33%) and CYP3A4 (31%) were relevant at high substrate concentration. The dose-dependent role of the active isoforms was confirmed in human liver microsomes by using selective CYP inhibitors. This prominent role of CYP2C in oxon formation was not shared by other OPTs. The pre-systemic Pho bioactivation measured in human intestinal microsomes was relevant accounting for » of that measured in the liver showing two reaction phases catalysed by CYP2C and CYP3A4. Phosmet efficiently inhibited CPF bioactivation and detoxication, with Ki values (≈30 µM) relevant to pesticide concentrations achievable in the human liver, while the opposite is unlikely (Ki ≈ 160 µM) at the actual exposure levels, depending on the peculiar isoform-specific Pho bioactivation. Kinetic information in humans can support the development of quantitative in vitro/in vivo extrapolation and in silico models for risk assessment refinement for single and multiple pesticides.


Assuntos
Clorpirifos/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Inseticidas/toxicidade , Fosmet/toxicidade , Clorpirifos/química , Clorpirifos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Interações Medicamentosas , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Inseticidas/química , Inseticidas/metabolismo , Inseticidas/farmacocinética , Isoenzimas , Fígado/enzimologia , Estrutura Molecular , Fosmet/química , Fosmet/metabolismo , Medição de Risco
3.
Toxicol Lett ; 322: 131-139, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31953209

RESUMO

Cyanotoxins, among which >200 variants of Microcystins (MC), constitute an emerging issue in food safety. Microcystins (MC) toxicity is congener-specific; however, the in vitro inhibition of PP1/PP2A (the key molecular event of MC toxicity) by single MC variants is comparable and MC toxicokinetics seems to be the critical point. Here, the variability in GSH conjugation catalysed by human recombinant enzymes and human hepatic cytosol has been compared between hydrophilic (MC-LR and MC-RR) and hydrophobic (MC-LW, MC-YR and MC-LF) variants, according to measured logPow. In vitro detoxication reaction (spontaneous plus enzymatic) is favored by the variant hydrophilicity, with MC-LF very poorly detoxified. With MC-YR and -LW the spontaneous reaction always gave the major contribution, whereas with MC-LR and -RR the enzymatic reaction became by far predominant when GSH was depleted. Consequently, the well-known GST polymorphisms seems not to be the major driver for potential human variability in susceptibility towards the MC-toxicity, except for MC-RR and -LR when GSH is depleted. Looking at these results and literature data, MC-RR (the least cytotoxic and acutely toxic in rodents) is the more hydrophilic, has the lowest OATP-mediated hepatic uptake and the highest detoxication efficiency. The opposite is true for the most lipophilic MC-LF: once entered in the cells with the highest uptake, it is very poorly detoxified, and resulted as the most toxic in various cell types. MC-dependent TK should be considered in order to estimate the variability in toxicity and to support the use of quantitative in vitro-in vivo extrapolation models of single toxins and their mixtures co-occurring in the environment.


Assuntos
Glutationa Transferase/metabolismo , Fígado/enzimologia , Microcistinas/metabolismo , Relação Dose-Resposta a Droga , Feminino , Glutationa/metabolismo , Glutationa Transferase/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Inativação Metabólica , Isoenzimas , Masculino , Microcistinas/química , Microcistinas/toxicidade , Estrutura Molecular , Polimorfismo Genético , Proteínas Recombinantes/metabolismo , Medição de Risco , Especificidade por Substrato , Toxicocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...